The structure $\mathbf{4 b}$ is shown in Figure 2. It contains a Ni-C(O) $-\mathrm{C}(\mathrm{Me})-\mathrm{C}(\mathrm{Me})$ metallacyclobutenone ring that is π-bonded to the molybdenum through carbons $C(2)$ and $C(3)$. This ring is close to planar, the maximum deviation of any atom from the mean square plane $\mathrm{NiC}(2) \mathrm{C}(3) \mathrm{C}(4)$ being $0.055 \AA$. The μ $\eta^{2}, \eta^{2}-1,3-\sigma / 2,3-\pi$ bonding mode of the $\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{O})$ ligand has been observed in only a few other cases, all involving homonuclear metals. ${ }^{9}$

In complex $\mathbf{4 b}$, the $\mathrm{Mo}-\mathrm{C}(2)$ and $\mathrm{Mo}-\mathrm{C}(3)$ bonds are unequal $[\mathrm{Mo}-\mathrm{C}(2)=2.179(2) \AA ; \mathrm{Mo}-\mathrm{C}(3)=2.290(2) \AA$]. Asymetric π-bonding of the $C(R)-C(R)$ fragment to the metal has been reported ${ }^{10-12}$ in all structurally characterized complexes of this type. In each case, as occurs here, the significantly longer M-C bond occurs for that carbon atom bonded to the ketonic CO. The $\mathrm{Ni}-\mathrm{Mo}$ bond length of 2.5859 (2) \AA is in the same range observed for other simple $\mathrm{Ni}-\mathrm{Mo}$ single bonds. ${ }^{14}$

Complexes $\mathbf{4 a}, \mathbf{5 a}$, and $\mathbf{5 b}$ are believed to have similar structures to $\mathbf{4 b} .^{17}$ All the compounds lose CO slowly when allowed to stand in solution at ambient temperatures, over a period of 1-2 days. The yields of complexes $\mathbf{4 a}, \mathbf{4 b}, \mathbf{5 a}$, and $\mathbf{5 b}$ from reactions of the complexes 1a and 1b with alkynes are thus time-dependent and decrease with time significantly. Clean conversion into the corresponding alkyne complex $\mathbf{2 a}, \mathbf{2 b}$ or $\mathbf{3}$ is observed when samples of $\mathbf{4 a}, \mathbf{1 b}$, or $5 \mathbf{a}, \mathbf{b}$ are heated in a sealed NMR tube. The complexes $\mathbf{5 a}$ and $\mathbf{5 b}$ are not regenerated by bubbling CO through solutions of $\mathbf{3}$ under ambient conditions. However, $\mathbf{4 a}$ is formed by bubbling CO through toluene solutions of 2 a at $25^{\circ} \mathrm{C}$.

Bubbling CO through solutions of $\mathbf{4 b}$ for 12 h does not afford 4b. It is not clear to us why a nickelacyclobuteone π-bonded to Mo rather than molybdenacyclobutenone π-bonded to Ni is obtained. However, the carbonyl ligand may be required by the nickel to reduce its electron density. In this regard it is interesting to note that in the alkyne complexes, a carbonyl ligand on the Mo appears to semibridge to the Ni , rather than remain terminal.

Subtle electronic and steric factors appear to have drastic effects on the ease of formation and stability of the π-bonded metallacycle. We have been able to synthesize $\mathrm{Ni}-\mathrm{Cr}$ and $\mathrm{Ni}-\mathrm{W}$ analogues to complexes $\mathbf{2 a}, \mathbf{2 b}$, and $\mathbf{3}$ similarly, but have not yet observed the formation of any $\mathrm{Ni}-\mathrm{Cr}$ or $\mathrm{Ni}-\mathrm{W}$ complex of a structure similar to $\mathbf{4 a}, \mathbf{b}$ or $\mathbf{5 a}, \mathbf{b}$. Further studies are in progress.

Acknowledgment. We thank Research Corporation, the Jesse H. Jones Faculty Research Fund, and the University of Notre

[^0]
Dame for generous financial support.

Supplementary Material Available: Complete listings of atomic positional and thermal parameters and bond distances and angles for compound 4 b (3 pages). Ordering information is given on any current masthead page.

On the Stability of Cubic $\mathbf{P}_{\mathbf{8}}$

Georges Trinquier,* Jean-Pierre Daudey, and Najia Komiha ${ }^{+}$
Laboratoire de Physique Quantique
(C.N.R.S., U.A. 505), Université Paul-Sabatier 31062 Toulouse Cedex, France

Received July 8, 1985
The stable molecular form of elemental phosphorus, which occurs in white phosphorus, is the P_{4} tetrahedron, which undergoes considerable ring strain due to the 60° valence angles at all atoms. In some polymerized modifications such as black or red phosphorus, the valence angles are closer to nonhybridized values. Indeed, in black phosphorus, which is directly derived from a simple cubic system, the angles at the phosphorus atoms are 102° and 96°; in red phosphorus, they are 101°. The question of whether or not the cubic P_{8} molecule could be stable has been put forward several times. Such a structure would give 90° angles at all phosphorus atoms and should induce reduced ring strain.

Fluck, Pavlidou, and Janoschek have calculated $\mathrm{P}_{8}\left(O_{h}\right)$ to be less stable than $2 \mathrm{P}_{4}$ by $47 \mathrm{kcal} / \mathrm{mol}$, using the experimental $\mathrm{P}-\mathrm{P}$ bond length ($2.21 \AA$) of \mathbf{P}_{4} in both molecules. ${ }^{1}$ In a previous work we have optimized the geometry of P_{8} with a double- ζ basis set. ${ }^{2}$ In this way, P_{8} was found to be more stable than $2 \mathrm{P}_{4}$ by 10 $\mathrm{kcal} / \mathrm{mol}$ but we already suggested that this result might be reversed by including d orbitals in the basis set, which should favor the more compact and constrained P_{4} systems. Halevi, Bock, and Roth recently reported a MNDO study in which all geometries were optimized and which gives P_{8} more stable than $2 \mathrm{P}_{4}$ by 68 $\mathrm{kcal} / \mathrm{mol} .{ }^{3}$ These authors show neatly that the simplest $D_{3 d}$ coupling $2 \mathrm{P}_{4} \rightleftharpoons \mathrm{P}_{8}$ is forbidden in the ground state. However, as pointed out by Kutzelnigg, ${ }^{4}$ both an ab initio SCF calculation with d orbitals in the basis set and a calculation of the force field, in order to demonstrate that P_{8} is a real minimum on the potential surface, are still needed. These two points are the main object of the present report. Possible ways of reaching this intermediate by coupling two electronically excited P_{4} molecules will be also examined.

Ab initio effective core potential SCF calculations were performed with the PSHONDO algorithm, ${ }^{5}$ using double- ζ (DZ) and

[^1]

Figure 1. Simplified orbital correlation diagram for the $D_{4 h}$ least-motion coupling of two square-planar P_{4} molecules. Orbital occupation corresponds to the coupling of quintet states with opposite spins on each fragment.

Table I. Summary of the Results on $\mathrm{P}_{2}, \mathrm{P}_{4}\left(T_{d}\right)$, and $\mathrm{P}_{8}\left(O_{h}\right)^{a}$

		DZ	DZd	exptl
P_{2}	$r_{\mathrm{P}-\mathrm{P}}$	1.962	1.865	1.893^{c}
	k_{e}	5.7	7.2	5.6^{c}
P_{4}	$r_{\mathrm{P}-\mathrm{P}}$	2.370	2.190	2.21^{d}
	$k_{\mathrm{A}_{1}}$	1.5	2.2	$1.75,^{e} 1.68^{f}$
P_{8}	$r_{\mathrm{P}-\mathrm{P}}$	2.420	2.274	
	$k_{\mathrm{A}_{1 \mathrm{~g}}}$	1.5	2.1	
$2 \mathrm{P}_{2} \rightarrow \mathrm{P}_{4}$	ΔE	+3.0	-29.4	
$2 \mathrm{P}_{4} \rightarrow \mathrm{P}_{8}$	ΔH^{b}	+4.3	-28.1	-52^{g}
	ΔH	-10.3	+26.3	
$4 \mathrm{P}_{2} \rightarrow \mathrm{P}_{8}$	ΔE	-8.1	+28.5	
	ΔH	-4.2	-32.4	
	ΔH	+0.5	-27.7	

${ }^{a}$ Units: r in \AA, k in mdyn $/ \AA, \Delta E$ and ΔH in kcal $/ \mathrm{mol} .{ }^{b} \Delta H$ is ΔE corrected by the differences in zero-point vibration energies calculated from Table II. ${ }^{=}$Reference 9. ${ }^{d}$ Reference 10 . ${ }^{e}$ Reference 11. ${ }^{f}$ Reference 12. ${ }^{g}$ Reference 13.
double $-\zeta+d(D Z d)$ basis sets $(\eta(d)=0.57)$. Force field calculations were carried out at the DZ level only, which is appropriate for this purpose and which lead to reasonable vibrational frequencies as can be seen for P_{2} and P_{4}. The results are summarized in Tables I and II. The P-P bond is found to be $0.08-\AA$ longer in P_{8} than in P_{4}. The inclusion of d orbitals in the basis set shortens this distance by about the same amount in both P_{4} and $P_{8}\left(-0.18\right.$ and $-0.15 \AA$, respectively). As expected ${ }^{2} P_{8}$ is calculated to be $26 \mathrm{kcal} / \mathrm{mol}$ less stable than $2 P_{4}$ at the DZd level. Correlation effects can be expected to increase this difference by favoring the strained tetrahedra over the near-strain free cube. We have already proposed that the 12 cis parallel repulsions occurring between the $\mathrm{P}-\mathrm{P}$ bonds in the cube might be responsible for the lower stability of P_{8} over $2 P_{4}$. ${ }^{2}$ The calculated vibrational frequencies (Table II) are all real, which means that the O_{h} structure is a real minimum on the P_{8} potential surface. The P_{8} $\rightarrow 2 \mathrm{P}_{4}$ dissociation being forbidden in the ground state, cubic P_{8} might therefore be a viable intermediate, which could actually

[^2]Table II. Calculated Harmonic Vibrational Frequencies ${ }^{a}$

P_{2}		$\mathrm{P}_{4}\left(T_{d}\right)$				$\mathrm{P}_{8}\left(O_{h}\right)$	
expt ${ }^{\text {b }}$				expt ${ }^{\text {c }}$	exptld ${ }^{\text {d }}$		
792	781	e	317	367	373	e_{u}	184
		t_{2}	422	462	481	t_{28}	274
		a_{1}	575	606	619	$\mathrm{a}_{2 \mathrm{u}}$	374
						t_{14}	385
						t_{28}	388
						a_{18}	409
						$\mathrm{t}_{2 \mathrm{u}}$	428
						e_{8}	451

${ }^{a} \mathrm{In} \mathrm{cm}^{-1}$ (DZ basis set). ${ }^{b}$ Reference 9. ${ }^{\text {C Reference } 12 .}{ }^{d}$ Reference 11.
be observed, under which conditions?
Since it is not accessible from two tetrahedral ground-state P_{4} molecules and since it seems most improbable to build the cube from a simultaneous coupling of four P_{2} units, we suggest that a simple way of building cubic P_{8} might be the coupling of two square-planar P_{4} units, i.e., two electronically excited P_{4} molecules. Obviously, $D_{4 h}$ least-motion coupling is allowed from quintet states, as illustrated by the simplified orbital correlation diagram of Figure 1. For open-shell triplet or singlet states, the $a_{2 u}$ orbital is filled while the $b_{2 g}$ orbital is empty. The reaction is formally forbidden; its barrier depends on the CI matrix element between these two orbitals. Note that because of the very nature of $\mathrm{a}_{2 \mathrm{u}}$ and $\mathrm{b}_{2 \mathrm{~g}}$ orbitals, a simple $C_{4 v}, \mathrm{C}_{4}, D_{2 h}, C_{2 h}$, or C_{i} distortion does not make the reaction allowed while a $C_{2 v}$ or C_{2} distortion does. ${ }^{14}$ By means of UHF + CI calculations ${ }^{15}$ performed at the DZd level, these two square-planar open-shell states were estimated to lie

[^3]$45 \mathrm{kcal} / \mathrm{mol}$ above the tetrahedral ${ }^{1} \mathrm{~A}_{1}$ ground state P_{4} for the ${ }^{3} \mathrm{E}_{\mathrm{g}}$ triplet state and $119 \mathrm{kcal} / \mathrm{mol}$ for the ${ }^{5} \mathrm{E}_{8}$ quintet state. The full exploration of these excited surfaces is complicated by the existence of many extrema and plateaux. There is little doubt that $D_{4 h}{ }^{5} \mathrm{E}_{8}$ is the lowest minimum on the quintet surface, but the shape of the triplet surface is quite different. According to our first results, the $D_{4 h}$ square-planar form, ${ }^{3} \mathrm{E}_{g}$, is only a saddle point between two nearly square-planar $D_{2 d}$ forms, which in turn are plateau points corresponding to transition states between two bicyclo-butyl-diradical-like $C_{2 v}$ stable forms. ${ }^{16.17}$ Further exploration of these surfaces is under way.

Acknowledgment. We thank Dr Jean-Paul Malrieu for helpful discussions.
(16) The UHF (DZd) geometries: quintet state $D_{4 n}{ }^{5} \mathrm{E}_{\mathrm{q}}, d_{\mathrm{P}-\mathrm{P}}=2.302 \AA$; triplet state $D_{4 h}{ }^{3} \mathrm{E}_{\mathrm{g}}, d_{\mathrm{p}-\mathrm{P}}=2.152 \AA ; D_{2 d}{ }^{3} \mathrm{E} d_{\mathrm{P}-\mathrm{P}}=2.150 \AA, \angle \mathrm{PPP}=87.7^{\circ}$, dihedral $\angle \mathrm{PPP}, \mathrm{PPP}=148.1^{\circ}$ (puckering $=31.9^{\circ}$); $C_{2 t}{ }^{3} \mathrm{~B}_{1}, d_{\mathrm{P}-\mathrm{P}}=2.208 \AA^{\prime}$, $d_{\mathrm{P}-\mathrm{P}}($ bridge $)=2.218 \AA, \angle \mathrm{PPP}=60.3^{\circ}$, dihedral $\angle \mathrm{PPP}, \mathrm{PPP}=107.0^{\circ}$ (puckering $=73.0^{\circ}$). The UHF relative energies for the $C_{2 b}, D_{2 d}$, and $D_{4 h}$ forms of the triplet state are calculated at $0,+13.2$, and $+16.8 \mathrm{kcal} / \mathrm{mol}$, respectively.
(17) This problem is analogous to that of the $\mathrm{C}_{4} \mathrm{H}_{4}$ potential surface. It has been shown that both $D_{2 h}$ cyclobutadiene and T_{d} tetrahedrane are real minima on the singlet surface. ${ }^{18-20}$ It has not been demonstrated which kind of stationary points the $D_{4 k}$ and $C_{2 v}$ triplet structures belong to. Another related problem is tetraphosphabicyclobutane $\mathrm{P}_{4} \mathrm{H}_{2}$. A puckered bicyclo structure is preferred for the singlet ground state, whereas a planar monocyclic structure is preferred for the triplet state. ${ }^{21}$
(18) Schweig, A.; Thiel, W. J. Am. Chem. Soc. 1979, 101, 4742.
(19) Kollmar, H. J. Am. Chem. Soc. 1980, I02, 2617.
(20) Kollmar, H.; Carrion, F.; Dewar, M. J. S.; Bingham, R. C. J. Am. Chem. Soc. 1981, 103, 5292.
(21) Schoeller, W. W.; Lerch, C. Inorg. Chem. 1983, 22, 2992.

X-ray and Neutron Diffraction Study of $\mathrm{H}_{5} \mathrm{Ir}\left[\mathrm{P}(\mathbf{i}-\mathrm{Pr})_{3}\right]_{2}$

Luigi Garlaschelli, ${ }^{\dagger}$ Saeed I. Khan, and Robert Bau*
Chemistry Department
University of Southern California Los Angeles, California 90089

Giuliano Longoni
Dipartimento di Chimica Inorganica e Metallorganica Università Di Milano, Milano 20133, Italy

Thomas F. Koetzle*
Chemistry Department, Brookhaven National Laboratory
Upton, New York 11973

Received July 22, 1985
In the past decade, many metal-polyhydride complexes of the type $\mathrm{H}_{x} \mathrm{ML}_{y}$ (where L is a tertiary phosphine), first prepared by Chatt, Shaw, and co-workers in the 1960 's, have been structurally characterized. ${ }^{1-3}$ In particular, polyhydride complexes of iridium and rhenium (e.g., $\mathrm{H}_{5} \mathrm{IrL}_{2}$ and related compounds) have received considerable attention because of their ability to activate $\mathrm{C}-\mathrm{H}$ bonds in saturated and unsaturated hydrocarbons. ${ }^{4}$ In this paper

[^4]

Figure 1. Structure of the core of $\mathrm{H}_{5} \operatorname{Ir}\left[\mathrm{P}(i-\mathrm{Pr})_{3}\right]_{2}$ as obtained from the neutron diffraction analysis. Atoms are drawn at the 50% probability level. For clarity, only the ipso carbon atoms of the isopropyl groups are shown. The hollow connecting lines between the H atoms do not represent bonds but represent nonbonding contacts between the hydride ligands.

Table I. Selected Distances and Angles in $\mathrm{H}_{5} \mathrm{Ir}\left[\mathrm{P}(i-\mathrm{pr})_{3}\right]_{2}{ }^{a}$

Bond Distances, \AA			
$\mathrm{Ir}-\mathrm{H}_{1}$	1.606 (5)	$\mathrm{H}_{1} \cdots \mathrm{H}_{2}$	1.90 (1)
$\mathrm{Ir}-\mathrm{H}_{2}$	1.630 (4)	$\mathrm{H}_{2} \cdots \mathrm{H}_{3}$	1.89 (1)
$\mathrm{Ir}-\mathrm{H}_{3}$	1.615 (5)	$\mathrm{H}_{3} \cdots \mathrm{H}_{4}$	1.83 (1)
$\mathrm{Ir}-\mathrm{H}_{4}$	1.587 (5)	$\mathrm{H}_{4} \cdots \mathrm{H}_{5}$	1.84 (1)
$\mathrm{Ir}-\mathrm{H}_{5}$	1.578 (4)	$\mathrm{H}_{5} \cdots \mathrm{H}_{1}$	1.93 (1)
av	1.603 (9)	av	1.882 (2)
Ir-P	2.309 (1)	C-H (methyl) (av)	1.086 (1)
$\mathrm{P}-\mathrm{C}$ (av)	1.859 (1)	$\mathrm{C}-\mathrm{C}$ (av)	1.528 (1)
$\mathrm{C}-\mathrm{H}$ (ipso) (av)	1.100 (2)		
Bond Angles			
$\mathrm{H}_{1}-\mathrm{Ir}-\mathrm{H}_{2}$	72.0 (5) ${ }^{\circ}$	$\mathrm{Ir}-\mathrm{P}-\mathrm{C}$ (av)	$114.1(5)^{\circ}$
$\mathrm{H}_{2}-\mathrm{Ir}-\mathrm{H}_{3}$	68.8 (5) ${ }^{\circ}$	$\mathrm{P}-\mathrm{C}-\mathrm{H}$ (av)	$102.4(10)^{\circ}$
$\mathrm{H}_{3}-\mathrm{Ir}-\mathrm{H}_{4}$	$70.5(5)^{\circ}$	$\mathrm{C}-\mathrm{C}-\mathrm{H}$ (av)	111.2 (4) ${ }^{\circ}$
$\mathrm{H}_{4}-\mathrm{Ir}-\mathrm{H}_{5}$	75.4 (5) ${ }^{\circ}$	$\mathrm{C}-\mathrm{C}-\mathrm{C}$ (av)	110.0 (3) ${ }^{\circ}$
$\mathrm{H}_{5}-\mathrm{Ir}-\mathrm{H}_{1}$	73.0 (5) ${ }^{\circ}$	$\mathrm{P}-\mathrm{C}-\mathrm{C}$ (av)	114.2 (10)
av	$71.9(11)^{\circ}$	$\mathrm{C}-\mathrm{P}-\mathrm{C}$ (av)	104.5 (30)
$\mathrm{H}-\mathrm{Ir}-\mathrm{P}$ (av)	89.7 (3) ${ }^{\circ}$	$\mathrm{H}-\mathrm{C}-\mathrm{H}$ (av)	107.6 (2) ${ }^{\circ}$

${ }^{a}$ Results of the 80 K neutron diffraction study. The esd's of average values were calculated as $\sigma(\bar{x})=\left[\sum_{i=1}^{n}\left(\bar{x}-x_{i}\right)^{2} / n(n-1)\right]$.
we report the preparation and single-crystal X-ray and neutrondiffraction analysis of $\mathrm{H}_{5} \mathrm{Ir}\left[\mathrm{P}(i-\mathrm{Pr})_{3}\right]_{2}$ ($i-\mathrm{Pr}=$ isopropyl).
$\mathrm{H}_{5} \mathrm{Ir}\left[\mathrm{P}(i-\mathrm{Pr})_{3}\right]_{2}$ was synthesized in a manner similar to that employed by Chatt et al. to make other iridium polyhydrides: ${ }^{5}$ to a deep red solution of $\mathrm{HIrCl}_{2}\left[\mathrm{P}(i-\mathrm{Pr})_{3}\right]_{2}{ }^{6,7}(0.61 \mathrm{~g}, 1.04 \mathrm{mmol})$ in THF, $0.15 \mathrm{~g}(3.9 \mathrm{mmol})$ of LiAlH_{4} was added in portions. An

[^5]
[^0]: (8) Crystal data for complex $\mathbf{4 b}$, at $21^{\circ} \mathrm{C}: \mathbf{a}=9.075$ (2) $\AA, b=12.416$ (3) $\AA, c=14.873$ (3) $\AA ; \beta=97.72$ (1) ${ }^{\circ}, Z=4, d_{\text {calcd }}=1.748 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $\mathrm{K} \alpha$, space group $P 2_{1} / n$ (No. 14). Of the ' 5677 unique reflections, 4342 with $F_{0}{ }^{2}>3 \sigma F_{0}{ }^{2}$ was used in the refinement. $R(F)=0.024 ; R_{\mathrm{w}}(F)=0.030$. Full details will be reported at a later date.
 (9) Three other examples of the $\mu-\eta^{2}, \eta^{2}$-bonding mode of the $\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})$ $C(O)$ ligand have been structurally characterized. These are the complexes $\left[\mathrm{Rh}_{2}(\mu-\mathrm{CO})\left\{\mu-\eta^{2}, \eta^{2}-\mathrm{C}(\mathrm{O}) \mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)_{2}\right\}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right]$, ${ }^{10}\left[\mathrm{~W}_{2}(\mathrm{CO})_{4}\left\{\mu-\eta^{2}, \eta^{2}-\mathrm{C}-\right.\right.$ $\left.\left.(\mathrm{O}) \mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right\}\left(\eta-\mathrm{C}_{\mathrm{H} 5}\right)_{2}\right],{ }^{11}$ and $\left[\mathrm{Pt}_{2}\left\{\mu-\eta^{2}, \eta^{2}-\mathrm{C}(\mathrm{O}) \mathrm{C}_{2} \mathrm{Ph}_{2}\right\}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$. ${ }^{12}$ Isomeric bonding modes, with the terminal $\mathrm{C}(\mathrm{R})$ and $\mathrm{C}(\mathrm{O})$ groups of this ligand bonded to two different Fe atoms or two distinct Ru atoms, are known. ${ }^{13}$
 (10) (a) Dickson, R. S.; Evans, G. S.; Fallon, G. D. J. Organomet. Chem. 1982, 236, C49-C52. See also: Herrmann, W. A.; Bauer, C.; Weichmann, J. Chem. Ber. 1983, 243, C21-C26.
 (11) Finnimore, S. R.; Knox, S. A. R.; Taylor, G. E. J. Chem. Soc., Dalton Trans. 1982, 1783-1788.
 (12) Boag, N. M.; Goodfellow, R. J.; Green, M.; Hessner, B.; Howard, J. A. K.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1983, 2585-2591. (13) Dyke, A. F.; Knox, S. A. R.; Naish, P. J.; Taylor, G. T. J. Chem. Soc., Dalton Trans. 1982, 1297-1 307.
 (14) $\mathrm{Ni}-\mathrm{Mo}=2.651$ and $2.557 \AA$ in the complex $\mathrm{MoNi}_{2}\left(\mu_{3}-\mathrm{CPh}\right)$ -$(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2},{ }^{15} 2.622 \AA$ in the related complex $\mathrm{CoMoNi}\left(\mu_{3}-\mathrm{CMe}\right)$ (CO) ${ }_{5}\left(\mu-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2},{ }^{15}$ and 2.616 (2) \AA in the alkyne-bridged species FeMoNi (CO) ${ }_{5}\left(\mu-\mathrm{PhC}_{2} \mathrm{CO}_{2}-i-\mathrm{Pr}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}{ }^{16}$
 (15) Beurich, H.; Blumhofer, R.; Vahrenkamp, H. Chem. Ber. 1982, 115 , 2409-2422.
 (16) Mlekuz, M.; Bougeard, P.; Sayer, B. G.; Peng, S.; McGlinchey, M. J.: Marinetti, A.; Saillard, J.-Y.; Naceur, J. B.; Mentzen, B.; Jaouen, G. Organometallics 1985, 4, 1123-1130.
 (17) Two other isomeric forms of $5 \mathbf{a}, \mathbf{b}$, with a molybdenacyclobutenone ring π-bonded to the nickel cannot be ruled out. However, based on the similar spectroscopic and chromatographic behavior of $\mathbf{5 a}$ and $\mathbf{5 b}$ to $\mathbf{4 a}$, and in view of the structure of $\mathbf{4 b}$, we believe that the assigned structures are more likely.

[^1]: ${ }^{+}$Permanent address: Facultē de Sciences, Université Mohamed V, Rabat, Morocco.
 (1) Fluck, E.; Pavlidou, C. M. E.; Janoschek, R. Phosphorus Sulfur 1979, 6, 469.
 (2) Trinquier, G.; Malrieu, J. P.; Daudey, J. P. Chem. Phys. Lett. 1981, 80, 552 .
 (3) Halevi, E. A.; Bock, H.; Roth, B. Inorg. Chem. 1984, 23, 4376.
 (4) Kutzelnigg, W. Angew. Chem., Int. Ed. Engl. 1984, 23, 272.
 (5) The PSHONDO program results from inclusion of pseudopotentials ${ }^{6}$ in the HONDO program.? These pseudopotentials have now been introduced into the version of HONDO that contains the calculation of analytical energy gradient in both RHF and UHF schemes. ${ }^{8}$
 (6) Durand, Ph.; Barthelat, J. C. Theor. Chim. Acta 1975, 38, 283.
 (7) Dupuis, M.; Rys, J.; King, M. F. J. Chem. Phys. 1976, 65, 383.
 (8) Dupuis, M.; King, H. F.; J. Chem. Phys. 1978, 68, 3998.
 (9) Huber, K. P.; Herzberg, G. "Constants of Diatomic Molecules"; Van Nostrand-Reinhold: New York, 1979.
 (10) Sutton, L. E. "Interatomic Distances"; Chemical Society: London, 1958; Spec. Publ. No. 11.
 (1) McDowell, R. S. Spectrochim. Acta, Part A 1971, 27 A, 773.
 (12) Bosworth, Y. M.; Clark, R. J. H.; Rippon, D. M. J. Mol. Spectrosc. 1973, 16, 240.

[^2]: (13) Mc Bride, B. J.; Heimel, S.; Ehlers, J. G.; Gordon, S. NASA [Spec. Publ.], SP NASA SP-3001.

[^3]: (14) Noneclipsed arrangements of two rhomboid P_{4} units may define such $C_{2 v}$ or C_{2} point groups.
 (15) The CI calculations were carried out with the CIPSI algorithm: Daudey, J. P.; Malrieu, J. P. In "Current Aspects of Quantum Chemistry"; Carbo, Ed.; Elsevier Scientific Publishing Co.: Amsterdam, 1982. For the open-shell states, the CI was performed from the spin-up set of the UHF wavefunction. Multireference wavefunctions built over 50,36 , and 16 determinants were taken as zeroth-order descriptions for closed-shell singlet and open-shell triplet and quintet states, respectively, and perturbed to the second order in energy.

[^4]: ${ }^{\dagger}$ On leave from the Dipartimento di Chimica Inorganica e Metallorganica, Università di Milano, Milano 20133, Italy.
 (1) For a brief review, see: Bau, R.; Carroll, W. E.; Hart, D. W.; Teller, R. G.; Koetzle, T. F. Adv. Chem. Ser. 1978, I67, 73.
 (2) (a) Bau, R.; Carroll, W. E.; Teller, R. G.; Koetzle, T. F. J. Am. Chem. Soc. 1977, 99, 3872. (b) Hart, D. W.; Bau, R.; Koetzle, T. F. J. Am. Chem. Soc. 1977, 99, 7557. (c) Teller, R. G.; Carroll, W. E.; Bau, R. Inorg. Chim. Acta 1984, 87, 121.
 (3) (a) Howard, J. A. K.; Mead, K. A.; Spencer, J. L. Acta Crystallogr., Sect. C 1983, C39, 555. (b) Howard, J. A. K.; Greagson, D.; Spencer, J. L.; Turner, D. Acta Crystallogr. Sect. A 1981, A37, C240. (c) Gregson, D.; Howard, J. A. K.; Nicholls, J. N.; Spencer, J. L.; Turner, D. G. J. Chem. Soc., Chem. Commun. 1980, 572. (d) Gregson, D.; Mason, S. A.; Howard, J. A. K.; Spencer, J. L.; Turner, D. G. Inorg. Chem. 1984, 23, 4107. (e) Emge, T. J.; Koetzle, T. F.; Bruno, J. W.; Caulton, K. G. Inorg. Chem. 1984, 23 , 4012. (f) Clark, G. R.; Skelton, B. W.; Waters, T. N. Inorg. Chim. Acta 1975, 12, 235 .

[^5]: (4) (a) Crabtree, R. H. Acc. Chem. Res. 1979, 12, 331. (b) Fisher, B. J.; Eisenberg, R. Organometallics 1983, 2, 764. (c) Clerici, M. G.; DiGioacchino, S.; Maspero, F.; Perrotti, E.; Zanobi, A. J. Organomet. Chem. 1975, 84, 379. (d) Green, M. A.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1981, 103, 695. (e) Baudry, D.; Ephritikhine, M.; Felkin, H. J. Chem. Soc., Chem. Commun. 1982, 606.
 (5) Chatt, J.; Coffey, R. S.; Shaw, B. L. J. Chem. Soc. 1965, 7391.
 (6) (a) $\mathrm{HIrCl}_{2}\left[\mathrm{P}(i-\mathrm{Pr})_{3}\right]_{2}^{7}$ was prepared via a procedure very similar to that described in ref $6 \mathrm{~b}: 1 \mathrm{~g}(2.83 \mathrm{mmol})$ of $\mathrm{IrCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and 0.5 mL of 12 M HCl were added to 50 mL of isopropyl alcohol and the suspension was heated for 1 h . To this green-brown suspension was added $0.907 \mathrm{~mL}(5.6 \mathrm{mmol})$ of the triisopropylphosphine, which resulted in a yellow-green precipitate. The mixture was refluxed at $80^{\circ} \mathrm{C}$ for 18 h , during which time a red crystalline solid was deposited. The compound was extracted with toluene ($5 \times 10 \mathrm{~mL}$), concentrated, and cooled to $-10^{\circ} \mathrm{C}$ to give a crystalline solid. Its structure has been analyzed by single-crystal X-ray diffraction methods which reveal a square-planar, trans- $\mathrm{IrCl} \mathrm{P}_{2} \mathrm{P}_{2}$ skeleton, implying a square pyramidal overall geometry with the "missing" H atom in the axial position (Garlaschelli, L.; Khan, S. I.; Bau, R., unpublished results). (b) Masters, C.; Shaw, B. L.; Stainbock, R. E. J. Chem. Soc., Dalton Trans. 1972, 664.
 (7) It has recently come to our attention that Werner and co-workers have also reported the synthesis of $\mathrm{HIrCl}_{2}\left(\mathrm{PR}_{3}\right)_{2}, \mathrm{H}_{2} \mathrm{IrCl}\left(\mathrm{PR}_{3}\right)_{2}$, and $\mathrm{H}_{2} \mathrm{RhCl}\left(\mathrm{PR}_{3}\right)_{2}$ (Werner, H.; Wolf, J.; Höhn, A. J. Organomet. Chem., 1985, 287, 395).

